METHOD FOR THE PRODUCTION OF HUMAN THROMBIN AND USES THEREOF

(45) Date of publication and mention of the grant of the patent: 12.04.2017 Bulletin 2017/15

(21) Application number: 12786887.5

(22) Date of filing: 31.10.2012

(12) EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention of the grant of the patent: 12.04.2017 Bulletin 2017/15

(21) Application number: 12786887.5

(22) Date of filing: 31.10.2012

(51) Int Cl.: C12Q 1/56(2006.01) C12N 9/74(2006.01)

(86) International application number: PCT/EP2012/071572

(87) International publication number: WO 2013/064542 (10.05.2013 Gazette 2013/19)

(54) METHODS FOR THE PRODUCTION OF HUMAN THROMBIN AND USES THEREOF

VERFAHREN ZUR HERSTELLUNG VON MENSCHLICHEM THROMBIN UND VERWENDUNGEN DAVID

PROCÉDÉ DE PRODUCTION DE THROMBINE HUMAINE ET SES UTILISATIONS

(84) Designated Contracting States: AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30) Priority: 04.11.2011 US 201161555763 P

(43) Date of publication of application: 10.09.2014 Bulletin 2014/37

(73) Proprietor: Asociación Centro de Investigación Cooperativa en Biomateriales - CIC biomagUNE 20009 San Sebastián (ES)

(72) Inventors:

• PAUVLOV, Valery E-20009 San Sebastián (Guipúzcoa) (ES)
• SAA PEÑA, Laura E-20016 San Sebastián (Guipúzcoa) (ES)
• VIREL SANCHEZ, Ana E-20009 San Sebastián (Guipúzcoa) (ES)

(74) Representative: Illescas, Manuel Manuel Illescas y Asociados, S.L. (MIA) Principe de Vergara n° 197 Oficina 1ªA 28002 Madrid (ES)

(56) References cited:

• ANA VIREL ET AL: "Quantification of Prothrombin in Human Plasma Amplified by Autocatalytic Reaction", ANALYTICAL CHEMISTRY, vol. 84, no. 5, 6 March 2012 (2012-03-06), pages 2380-2387, XP055052188, ISSN: 0003-2700, DOI: 10.1021/ac203138y

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

FIELD OF THE INVENTION

[0001] The invention refers to the field of biotechnology. Specifically, the invention relates to a stable recombinant mutated prethrombin-2 which is able to convert itself autocatalytically into active α-thrombin that can be used as a haemostatic. Another aspect of the invention includes the application of mutated recombinant prethrombin-2 and the α-thrombin obtained by itself-autocatalytic activity, in diagnostics and/or prognostics of coagulation related-diseases.

BACKGROUND OF THE INVENTION

[0002] α-Thrombin plays an important role in hemostasis and hence is a highly useful protein for use as a hemostatic. Currently, α-thrombin is utilized in more than 1 000 000 patients in the USA each year [1]. The main source of α-thrombin is pooled human plasma collected from donors. The plasma is treated by complicated filtration and separation, however, no procedure is completely effective against viral particles derived from human blood [2].

[0003] Alternatively, recombinant α-thrombin can be produced that is devoid of the risks of viral particles. Thrombin is synthesized in the form of prothrombin which is one of proteolytic enzymes which are normally synthesized in their inactive form, known as proenzymes or zymogens, which can be cleaved by factor Xa or by ecarin, a protease found in snake poison, [3] at two places, Arg-Thr and Arg-Ile bonds. Cleavage at the first factor Xa site results in prethrombin-2, an inactive single-chain precursor that has the same size as α-thrombin. Activation of prethrombin-2 to α-thrombin occurs through internal rearrangement of the initial peptide chain upon cleavage of Arg-Ile bond with factor Xa or by ecarin [4]. The cleaved shorter peptide section does not leave the α-thrombin macromolecule but stays linked with the longer peptide sequence via an S-S bond.

[0004] Currently, it is impossible to directly express active recombinant α-thrombin from the gene fragment corresponding to prothrombin because the resulting protein will be always inactive prethrombin-2. The preparation of recombinant prethrombin-2 and its activation to α-thrombin by ecarin, has been described in the literature [5]. The main drawback of this procedure is the necessity to employ extremely dangerous ecarin, the primary reagent in the venom of the snake Echis carinatus [6] to activate α-thrombin. The removal of ecarin, significantly diminishes the yield and increases costs of α-thrombin preparation. Still there is no 100% assurance that recombinant α-thrombin is not contaminated with ecarin. Factor Xa can be used instead of lethal ecarin but it requires for its optimal operation a complex with factor V, platelet phospholipids and calcium [7], that also must be separated from α-thrombin.

[0005] On the other hand, enzymes, such as, α-thrombin, have been commonly used in different bioanalytical assays for detection and amplification of signal. They are employed in quantification of glucose [8], H2O2 [9], pesticides [10], cholesterol [11], and ethanol [12], and are the basis for ELISAs (enzyme linked immunosorbent assays) [13]. Enzyme amplification techniques [14] have been used to improve the sensitivity of several bioanalytical assays. In this sense, the state of the art discloses an assay including a double amplification cascade in which ecarin, converted prothrombin to α-thrombin to digest an artificial fluorogenic substrate [15]. As mentioned above, prothrombin is one of proteolytic enzymes which are normally synthesized in their inactive form, known as proenzymes or zymogens [16]. When the product of the proenzyme cleavage reaction catalyzes the same reaction, the process is called an autocatalytic activation [17]. Some examples of natural autocatalytic enzymes are trypsinogen, pepsinogen, or the blood coagulation factor XII [18]. The autocatalytic behavior of these enzymes could be applied for analytical purposes. Moreover, tests for α-thrombin activity are used to evaluate the rate of blood coagulation, therefore it is important to develop sensitive methods to monitor its activity.

[0006] The signal obtained by a low concentration of an enzyme can be considerably amplified by means of an autocatalytic reaction. The use of zymogens in bioanalysis is limited since all known natural autocatalytic proenzymes are unstable in vitro and their preparations always contain traces of corresponding active enzymes [19]. To the best of our knowledge, there are still no commercially available kits based on natural autocatalytic proenzymes. Previously, the inventors used the self-replicating DNA machines based on endonucleases to create signal amplification networks [20, 21]. Unfortunately, DNA machines are not stable in body liquids and can not be applied for the analysis of blood derived samples.

[0007] In spite of considerable research into the signal amplification in bioassays, specifically, using self-replicating enzymes and also the preparation and production of these enzymes, more studies are still needed. Moreover, it has not yet been found a proenzyme stable in vitro without traces of corresponding active enzymes and also with autocatalytic activity, particularly these is not disclosures in the prior art about a recombinant prethrombin-2, with autocatalytic features, which show stability in vitro, without traces of α-thrombin.
DESCRIPTION OF THE INVENTION

Brief description of the invention

[0008] The present invention, overcomes these problems in the art by disclosing a new methodology for production of a mouse (SEQ ID NO: 1) and human (SEQ ID NO: 2) mutant recombinant stable prethrombin-2 which are able to convert itself auto-catalytically into active α-thrombin in the absence of ecarin or factor Xa or any other substance.

[0009] The method for obtaining a stable mutant recombinant prethrombin-2 consists of changing the cleavage site of a recombinant proenzyme by site directed mutagenesis to obtain a stable protein that can be cleaved by the corresponding active enzyme. Specifically, the inventors have modified the cleavage site of native or wild type (WT) mouse (SEQ ID NO: 3) and human (SEQ ID NO: 4) prethrombin-2 to a α-thrombin cleavage site to obtain a stable artificial autocalytic enzyme. The mutant recombinant preenzyme is activated by α-thrombin triggering the autocalytic reaction. The concept of signal amplification using self-replicating enzymes can be applied to improve sensitivity of α-thrombin assays and also for the preparation of different enzymes. Therefore, the present invention displays an autocalytic mutant recombinant enzyme, prethrombin-2, and its application for the signal amplification in bioassays for the detection of α-thrombin/prothrombin and for the synthesis of recombinant α-thrombin.

[0010] Surprisingly, the mutated prethrombin-2 disclosed in the present invention is completely stable, without any trace of thrombin, or any other proteases or any undesired factor, component, contaminant, etc. which may initiate an undesired and/or uncontrolled cleavage of the mutant prethrombin-2. The invention described herein, allows total control of the autocalysis of prethrombin-2 due to the unexpected stability shown by the mutated prethrombin-2 of the invention. This stability feature of mutated prethrombin-2 of present invention has as advantage its use in in vitro assays for detection of α-thrombin/prothrombin, with more accuracy as far as the stable mutated prethrombin-2 of the invention has not autocalytic basal activity due to contaminant, as the ones previously mentioned, and its autocalysis is only triggered by the amount of α-thrombin present in the assay sample.

[0011] Thus, in a first aspect the present invention refers to a stable and autocalytic mutant prethrombin-2, from murine or human origins (SEQ ID NO: 1 or SEQ ID NO: 2, respectively) and their corresponding DNA encoding sequences (SEQ ID NO: 5 or SEQ ID NO: 6, respectively).

[0012] In a second aspect, the invention refers to the use of at least one of the mutated prethrombin-2 proenzymes or their nucleotide encoding sequences as mentioned above for the production of α-thrombin.

[0013] In another aspect, the invention refers to mutant pre-thrombin-2 for use in the in vitro detection of α-thrombin/prothrombin. In another aspect, the invention refers to mutant pre-thrombin-2 for use in the in vitro diagnosis and/or prognosis of coagulation-related diseases. The coagulation-related diseases are selected from the group comprising: haemophilia; thrombosis; inherited prothrombin deficiency, either Type I also known as hypoprothrombinemia, or Type II, also known as dysprothrombinemias; acquired prothrombin deficiency; hypoprothrombinaemia syndrome; and von Willebrand disease.

[0014] In a third aspect, the invention refers to a kit for detecting α-thrombin/prothrombin in a sample comprising the mutant prethrombin-2 as mentioned above, which comprises at least one of the mutated prethrombin-2 proenzymes disclosed in the present invention. The kit disclosed herein also could include other reagents, i.e.: assay reagents, buffers and sterile saline or another pharmaceutically acceptable emulsion and suspension base. In addition, the kits may include instructional materials containing directions (e.g., protocols) for the practice of the assay methods of this invention.

[0015] In another aspect, the present invention refers to the use of the kit disclosed herein for the in vitro diagnosis and/or prognosis of coagulation-related diseases. The coagulation-related disease is selected from the group comprising: haemophilia, thrombosis, inherited prothrombin deficiency Type I or Type II, acquired prothrombin deficiency and von Willebrand disease.

[0016] In another aspect, the present invention refers to a method for preparing active α-thrombin using the mutant recombinant prethrombin-2 disclosed in the present invention.

[0017] In still another aspect, the invention refers to an in vitro method of diagnosis and/or prognosis of coagulation-related diseases which comprises determining in a sample from a subject, the expression or activity level of α-thrombin/prothrombin using the kit disclosed herein and the comparison of said expression level with respect to the expression values obtained from healthy controls. The coagulation-related disease is selected from the group comprising: haemophilia, thrombosis, inherited prothrombin deficiency Type I or Type II, acquired prothrombin deficiency and von Willebrand disease. The α-thrombin/prothrombin expression or activity levels are analyzed in a sample of blood. For this purpose is extremely important that the prethrombin-2 to be used in the amplification reaction wherein the in vitro assay is based was stable, because traces of thrombin or any other proteases contaminating the prethrombin-2 to be used in thrombin detection in biological samples would render artefacts.

[0018] Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. However, for ease of reference, some of these terms will now be defined.
The expression or activity level of a disease-associated \(\alpha \)-thrombin/prothrombin is information in a number of ways. For example, a differential expression of a disease-associated \(\alpha \)-thrombin/prothrombin compared to a control may be used as a diagnostic that a patient suffers from the disease. Expression or activity levels of a disease-associated \(\alpha \)-thrombin/prothrombin may also be used to monitor the treatment and disease state of a patient. Furthermore, expression or activity levels of the disease-associated \(\alpha \)-thrombin/prothrombin may allow the screening of drug candidates for altering a particular expression profile or suppressing an expression profile associated with the disease. In the present invention, the terms "expression or activity" in relation with \(\alpha \)-thrombin/prothrombin levels are used interchangeably.

The term "sample" refers preferably to a sample of a fluid such as a solution and more preferably refers to a sample of a body fluid. Samples of body fluids can be obtained by well known techniques and include, preferably, samples of blood, plasma, serum, more preferably, samples of plasma.

The term "subject" as used herein refers to an animal, preferably a mammal, most preferably a human being, including both young and old human beings of both sexes which may suffer from or are predisposed to a pathology. The subject according to this aspect of the present invention may suffer from a pathology associated with abnormal expression or activity of coagulation pathway. The terms "subject" and "patient" could be used interchangeably throughout the present invention.

The term "stable prethrombin-2" means, within present invention, a prethrombin-2 in a sample free of thrombin or its absence.

Figure Legends

Figure 1. Sequence alignment of the cleavage site of wild type (WT) and mutant prethrombin-2. FXa cleavage site present in WT prethrombin-2, corresponding to residues IDGRIV, was changed to IVPRGV which corresponds to a \(\alpha \)-thrombin (Th) cleavage site. Changed amino acids are underlined.

Figure 2. Analysis of the purified mouse mutant prethrombin-2. A) 12% SDS-PAGE stained with Coomassie Brilliant Blue. B) Nitrocellulose membrane probed with anti-His-tag mouse monoclonal antibodies. Lane 1, molecular mass references; lane 2, 0.3 \(\mu \)g mutant prethrombin-2.

Figure 3. Stability assay of human mutant prethrombin-2. Evolution of fluorescence intensity in samples containing human wild type recombinant prethrombin-2 (1.6 x 10\(^{-6}\) M) (a) or human mutant recombinant prethrombin-2 (1.6 x 10\(^{-6}\) M) (b), with the fluorogenic substrate rhodamine 110, bis-(p-tosyl-L-glycyl-L-prolyl-L-arginine amide) (4 \(\times 10^{-6}\) M) (Invitrogen) in 50 mM Tris-HCl, pH 9.0, 150 mM NaCl.

Figure 4. Evolution of fluorescence intensity in samples containing a) 2.2 \(\times 10^{-12}\) M human wild type \(\alpha \)-thrombin and 2.1 x 10\(^{-7}\) M mutant human prethrombin-2; b) 2.2x10\(^{-12}\) M human wild type \(\alpha \)-thrombin and 2.1x10\(^{-7}\) M mouse mutant prethrombin-2; c) 2.2x10\(^{-12}\) M human wild type \(\alpha \)-thrombin; d) 2.1x10\(^{-7}\) M human mutant prethrombin-2; e) 2.1x10\(^{-7}\) M mouse mutant prethrombin-2.

Figure 5. Time courses of mutant prethrombin-2 activation and self-replication, a) 5.38 \(\times 10^{-9}\) M cleaved mutant prethrombin-2 and 2.3 \(\times 10^{-7}\) M untreated mutant prethrombin-2; b) 5.38 \(\times 10^{-9}\) M cleaved mutant prethrombin-2; c) 2.3 \(\times 10^{-7}\) M untreated mutant prethrombin-2.

Figure 6. A) Evolution of fluorescence intensity in the presence (curves a-h) of 5.3x10\(^{-7}\) M mutant prethrombin-2 or its absence (curves i-p). The samples contained different concentrations of human \(\alpha \)-thrombin: a) and i) 5x10\(^{-12}\) M; b) and j) 3.75x10\(^{-12}\) M; c) and k) 2.5x10\(^{-12}\) M; d) and 1) 1.5x10\(^{-12}\) M; e) and m) 7.5x10\(^{-13}\) M; f) and n) 5x10\(^{-13}\) M; g) and o) 2.5x10\(^{-13}\) M; h) and p) 0 M. B) Calibration curve of \(\alpha \)-thrombin in the presence (curve a) and absence (curve b) of mutant prethrombin-2.

Figure 7. A) Evolution of fluorescence intensity in human plasma samples in the presence of 1.5x10\(^{-6}\) M mutant prethrombin-2 (curves a-f) or its absence (curves g-1). The samples contained 6x10\(^{-8}\) M ecarin and different volumes of human plasma: a) and g) 2.6 mL; b) and h) 2 mL; c) and i) 1.3 mL; d) and j) 0.67 mL; e) and k) 0.33 mL; f) and 1) 0 mL. B) Calibration curve of human plasma in the presence (curve a) or absence (curve b) of mutant prethrombin-2.

Detailed description of the invention

Present invention relates to a mutant prethrombin-2 characterized by having SEQ ID NO: 1 or SEQ ID NO: 2 or their nucleotide encoding sequences characterized by SEQ ID NO: 5 or SEQ ID NO: 6, respectively.

In a particular embodiment of the invention, the mutant prethrombin-2 is SEQ ID NO: 2 or their nucleotide encoding sequence characterized by SEQ ID NO: 6.
In another particular embodiment of the invention, the mutant prethrombin-2 disclosed in the present invention is characterized by having autocatalytic activity and by being stable in vitro.

Present invention also relates to the use of the mutated prethrombin-2 mentioned above for the production of \(\alpha \)-thrombin. Furthermore, present invention also relates to mutated prothrombin-2 for use in the in vitro detection of \(\alpha \)-thrombin/prothrombin in biological samples.

Present invention also discloses the use of the mutated prethrombin-2 mentioned above for the manufacture of a kit for the in vitro diagnosis and/or prognosis of coagulation-related diseases.

In a particular embodiment of the kit of the present invention, the coagulation-related disease is selected from the group comprising: haemophilia, thrombosis, inherited prothrombin deficiency Type I or Type II, acquired prothrombin deficiency and von Willebrand disease.

Present invention also discloses a mutant prethrombin-2 mentioned above for use in the in vitro diagnosis and/or prognosis of coagulation-related diseases. In a particular embodiment, the coagulation-related disease is selected from the group comprising: haemophilia, thrombosis, inherited prothrombin deficiency Type I or Type II, acquired prothrombin deficiency and von Willebrand disease.

Present invention also discloses a method for preparing \(\alpha \)-thrombin which comprises the following steps:

1. Modify, preferably by site-direct mutagenesis, the DNA sequence encoding for factor Xa cleavage site in wild type prethrombin-2 gene to a DNA sequence encoding for \(\alpha \)-thrombin cleavage site.
2. Insert the mutated DNA prethrombin-2 into an expression vector.
3. Transform a host cell with the vector disclosed in previous step.
4. Culturing the transformed host cell of previous step in an appropriate culture medium.
5. Harvest transformed cells and solubilize proteins in inclusion bodies.
6. Isolating the supernatant to obtain purified mutant prethrombin-2.
7. Contacting the purified mutant prethrombin-2 obtained in previous step with \(\alpha \)-thrombin.
8. Separating the \(\alpha \)-thrombin obtained in previous step 7.

In a preferred embodiment of the invention, the method disclosed herein it is characterized in that the amino acid sequence of factor Xa cleave site in wild type prethrombin-2 is SEQ ID NO: 17.

In a preferred embodiment of the invention, the method disclosed herein it is characterized in that the amino acid sequence of the thrombin cleave site in mutant prethrombin-2 is SEQ ID NO: 18.

In a preferred embodiment of the invention, the method disclosed herein it is characterized in that the DNA sequence of the wild type prethrombin-2 is selected from the group comprising SEQ ID NO: 7 or SEQ ID NO: 8.

In a preferred embodiment of the invention, the method disclosed herein it is characterized in that the vector is preferably a plasmid. Any vector or plasmid known in the prior art for the same purpose could be used. In this sense, any vector suitable for expression in bacteria containing T7 promoter and coding a N-terminal His tag may be employed. On the other hand, any vector suitable for expression in yeast, containing galactose or methanol inducible promoters and coding a His tag may also be used in present invention. More particularly the plasmid is pET-TEV-prethr-2 plasmid or pQE9-hprethr-2 plasmid.

In a preferred embodiment of the invention, the method disclosed herein it is characterized in that the host cell is selected from the group comprising: bacterial cells, animal cells and/or yeast.

In a more preferred embodiment of the invention the bacterial host cell is E. coli, preferably, E. coli XL1-blue, or E. coli BL21 or any strain derived thereof.

In a more preferred embodiment of the invention the host cell is a yeast selected from the group comprising: Saccharomyces sp. or Pichia pastoris or any strain derived thereof.

In a preferred embodiment of the invention, the method disclosed herein it is characterized in that the ratio prethrombin-2: \(\alpha \)-thrombin of step 7 ranged 1:10-6.

In a preferred embodiment of the invention, the method disclosed herein it is characterized in that the purification of \(\alpha \)-thrombin comprises at least one step of techniques of affinity chromatography.

Present invention also discloses a kit for detecting \(\alpha \)-thrombin/prothrombin in a sample comprising the mutant prethrombin-2, murine or human as disclosed herein.

Present invention also discloses the use of the kit mentioned above for the in vitro diagnosis and/or prognosis of coagulation-related diseases.

In a preferred embodiment, the coagulation-related disease is selected from the group comprising: haemophilia, thrombosis, inherited prothrombin deficiency Type I or Type II, acquired prothrombin deficiency and von Willebrand disease.

Present invention also disclosed an in vitro method of diagnosis and/or prognosis of coagulation-related diseases which comprises the determination in a sample from a subject of the expression or activity level of \(\alpha \)-thrombin/prothrombin using the kit mentioned above and the comparison of said expression or activity level with respect to the values for the
same expression or activity obtained from healthy controls.

In a preferred embodiment of the in vitro method, the coagulation-related disease is selected from the group comprising: haemophilia, thrombosis, inherited prothrombin deficiency: Type I or Type II, acquired prothrombin deficiency and von Willebrand disease.

In a preferred embodiment of the in vitro method, the sample of the subject is selected from blood, plasma and/or serum, more preferably, samples of plasma.

Although any methods and materials similar or equivalent to those described herein can also be used in the practice or testing of the present invention, the preferred methods and materials are now described.

The following examples illustrate the invention and should not be considered in a limiting sense, but rather in an illustrative sense of the invention.

The present invention discloses the change the cleavage site of a recombinant proenzyme, prethrombin-2, by site directed mutagenesis to obtain a stable artificial autocatalytic enzyme. To achieve this purpose, the inventors have cloned the WT gene of prethrombin-2 and modified the factor Xa cleavage site in it to a thrombin cleavage site to obtain a stable artificial autocatalytic enzyme. The mutation strategy relies on converting the factor Xa cleavage site (Arg-Ile bond) into the α-Thrombin cleavage site by directed mutagenesis to create a self-replicative protease.

Briefly, for this approach, the sequences corresponding to human and mouse prethrombin-2 genes were cloned and five single mutations were introduced by, as mentioned above, site-directed mutagenesis in order to create a mutant prethrombin-2.

First, the vector pCMV-SPORT6 containing the full length mouse prothrombin cDNA was obtained from Geneservice (UK). The prethrombin-2 fragment was amplified from the same vector by PCR using PfuTurbo (Stratagene) and PCR nucleotide mix (Promega). Amplification primers were SEQ ID NO: 9 and SEQ ID NO: 10 containing BamHI and XhoI restriction sites respectively. The PCR product was run on an agarose gel, purified with QiAquick gel extraction kit (Qiagen) and digested with BamHI and XhoI (Takara). Afterwards, the fragment was purified using the QiAquick PCR purification kit (Qiagen) and ligated into the pET-TEV expression vector, a pET-19b vector modified by introducing a TEV protease cleavage site (generously provided by Dr. Lars Backman) giving pET-TEV-prethr-2 plasmid. The correctness of the inserted sequence was verified (MWG Germany). pET-TEV-prethr-2 plasmid was used as a template to mutate the prethrombin-2 gene. Site-direct specific mutations were introduced using the following primers: SEQ ID NO: 11 and SEQ ID NO: 12 with QuikChange II Site-Directed Mutagenesis Kit (Stratagene). The correctness of the mutant sequence was verified (MWG Germany).

The vector pOTB7 containing the full length human prothrombin cDNA was obtained from Geneservice (UK). The prethrombin-2 fragment was amplified from the same vector by PCR using PfuTurbo (Stratagene) and PCR nucleotide mix (Promega). Amplification primers were SEQ ID NO: 13 and SEQ ID NO: 14 containing Sall and HindIII restriction sites respectively. The PCR product was run on an agarose gel, purified with QiAquick gel extraction kit (Qiagen) and digested with Sall and HindIII (Takara). Afterwards, the fragment was purified using the QiAquick PCR purification kit (Qiagen) and ligated into the pQE9 expression vector (Qiagen), giving pQE9-hprethr-2 plasmid. The correctness of the inserted sequence was verified (MWG Germany). pQE9-hprethr-2 plasmid was used as a template to mutate the human prethrombin-2 gene. Site-direct specific mutations were introduced using the following primers SEQ ID NO: 15 and SEQ ID NO: 16 with QuikChange II Site-Directed Mutagenesis Kit (Stratagene). The correctness of the mutant sequence was verified (MWG Germany).

As a result, the, the FXa cleavage site present in wild type (WT) prethrombin-2, corresponding to residues with SEQ ID NO: 17 was changed to residues with SEQ ID NO: 18 which corresponds to the thrombin cleavage site. Figure 1 shows the alignment of the FXa and thrombin cleavage sites of mutant prethrombin-2 and WT respectively. Changed amino acids are underlined. Thrombin selectively cleaves Arg-Gly bonds in fibrinogen and other polypeptides. Studies on the thrombin cleavage site from 30 different polypeptides revealed that the optimum cleavage site has the structure of P4-P3-Pro-Arg-P1'-P2' where P4 and P3 are hydrophobic amino acids and P1’and P2’ are non acidic amino acids. It was also observed that polypeptides which contained Gly at P1' were especially susceptible to thrombin cleavage [24].

Example 2. Expression and purification of mutant prethrombin-2

The plasmid contained the mutated sequences of human and mouse prethrombin-2 were used to transform Escherichia coli cells and the human and mouse mutant prethrombin-2 proteins were expressed and purified.

Particularly, Escherichia coli BL21 (DE3) cells were transformed by heat shock with the plasmid containing the mutant mouse prethrombin-2 gene. Cells were grown at 37°C in Luria-Bertani media supplemented with 100 μg/ml ampicillin to reach an OD600 ≈ 0.7. Protein expression was induced by adding 0.1 mM isopropyl thio-β-D-galactoside. Cells were grown for 4 h at 37°C and harvested by centrifugation. Protein purification from inclusion bodies was performed.
as described in Soejima et al. [25] with some modifications. After protein refolding, the sample was dialyzed against 50 mM Tris-HCl, pH 7.6, 150 mM NaCl, during two days at 4 °C without stirring. The dialyzed sample was centrifuged and the resulting supernatant was filtered. The pass-through fraction was loaded on a nickel HisTrapTM HP affinity column (GE Healthcare) controlled by an ÄKTA purifier equipment (GE Healthcare). Protein was eluted with a linear gradient from 0 to 500 mM of imidazole in 50 mM Tris-HCl, pH 7.6, 150 mM NaCl. Protein purity was investigated by 12 % SDS-PAGE.

Example 4. α-Thrombin activity assays

In order to verify whether human α-thrombin could cleave mutated recombinant human and mouse prethrombins-2, were incubated both mutated recombinant proteins with WT human α-thrombin (Sigma Aldrich) in the presence of the fluorogenic substrate (p-tosyl-L-glycyl-L-prolyl-L-arginine amide) (Invitrogen). Thrombin activity assays were performed in a Varioskan Flash microplate reader (Thermo Scientific) using black microwell plates at room temperature. Samples (100 μl final volume) were incubated in 50 mM Tris-HCl, pH 9.0, 150 mM NaCl with 4×10^{-6} M rhodamine 110, bis-(p-tosyl-L-glycyl-L-prolyl-L-arginine amide) (Invitrogen) and the fluorescence of the resulting solution was monitored with a λexcitation= 498 nm and λemission= 521 nm.

Example 3. Stability assay of mutant prethrombin-2

Proteins, mouse mutant prethrombin-2 and human mutant prethrombin-2, were separated by 12% SDS-PAGE and electroblotted onto a nitrocellulose membrane. The membrane was then incubated for 1 h in phosphate-buffered saline (PBS), containing 0.05% Tween 20, and 10% defatted milk. Afterwards, the membrane was washed with PBS containing 0.05% Tween 20 and incubated with anti-His mouse monoclonal antibodies (GE Healthcare) for 1 h. Then, the membrane was washed with PBS containing 0.05% Tween 20 and further incubated with secondary rabbit antibodies antimouse IgG conjugated to alkaline phosphatase (Sigma-Aldrich) for 1 h. After washing with PBS containing 0.05% Tween 20, protein bands were developed with 5-bromo-4-chloro-3-indolyl phosphate/nitro blue tetrazolium solution (Fluka) (Figure 2B).

Western blot

Stability assay measures in real time the enzymatic activity of active α-thrombin in the presence of the fluorogenic substrate (p-tosyl-Gly-Pro-Arg)2- rhodamine 110 (Invitrogen). This substrate contains the amino acid sequence recognized by α-thrombin, which is a peptidase. Thrombin cleavages the amino acid releasing the fluorescent rhodamine. During the test, it was measured the increase in fluorescence over time. The more enzyme activity of α-thrombin higher the cleavage speed, and therefore the release of rhodamine, which causes the increase in fluorescence. Figure 3 shows that the WT human recombinant prethrombin-2 (a) is less stable than the mutant human recombinant prethrombin-2 discloses in the present invention (b). The test with mutated recombinant prethrombin-2 of the invention shows no increase in fluorescence for 15 h (55 000 sec). This implies that in preparation of mutated recombinant prethrombin-2 of the invention there are not residues of active α-thrombin, neither are being produced during the time that test takes place. On the other hand, the test with WT human recombinant prethrombin-2 displays an increase in the fluorescence from the beginning of the test. This increase in fluorescence indicates the presence of active α-thrombin in the preparation; even though WT human recombinant prethrombin-2 was also obtained by genetic engineering in E. coli. Therefore the stability in vitro shown by mutant human prethrombin of present invention was due to the mutagenesis operated herein.
using λ\text{excitation}= 498 nm and λ\text{emission}= 521 nm.

[0063] The results obtained from the experiment display that in the presence of WT human α-thrombin, the protease activity increased considerably with time (Figure 4, curves a, b), compared to the samples where only WT α-thrombin was added (Figure 4, curve c). On the other hand, in the absence of WT α-thrombin, both mutants did not present enzymatic activity (Figure 4, curves d, e), demonstrating their stability under the experimental conditions. These results clearly indicate that WT α-thrombin is able to cleavage both mutant recombinant prethrombins-2 to generate active enzymes with α-thrombin activity. Exogenous α-thrombin activates the mutant recombinant prethrombin-2 converting it into endogenous α-thrombin which in turn cleaves other macromolecules of prethrombin-2 and the fluorogenic substrate in the course of this autocatalytic reaction.

Example 5. Mutant prethrombin-2 self-replication assays

[0064] Another experiment proved that generated endogenous α-thrombin is able to cleavage mutated recombinant prethrombin-2 to maintain the autocatalytic process. A solution of mutated prethrombin-2 was treated with α-thrombin immobilized on agarose. Mouse mutant prethrombin-2 was cleaved using Thrombin CleanCleave™ Kit (Sigma-Aldrich) as described in manufacturer’s directions. The protein solution was then filtered through a 0.22 μm filter to eliminate any remaining. To investigate the autocatalytic reaction, 5.38 \times 10^{-9} M cleaved mouse mutant prethrombin-2 was mixed with and without 2.3 \times 10^{-7} M untreated mouse mutant prethrombin-2 and with the fluorogenic substrate (p-tosyl-Gly-Pro-Arg)2-rhodamine 110 (Invitrogen). Then, the evolution of the fluorescence intensity was monitored using λ\text{excitation}= 498 nm and λ\text{emission}= 521 nm.

[0065] Figure 5 shows that in the presence of the cleaved mutant prethrombin-2 and excess of the untreated mutant prethrombin-2 (Figure 5 curve a), the fluorescence signal increased considerably in comparison with the sample where only the cleaved mutant prethrombin-2 was included (Figure 5 curve b). The untreated mutant prethrombin-2 treated with the buffer solution used to wash α-thrombin on agarose demonstrated no activity (Figure 5 curve c). Consequently, growth in the protease activity was not caused by exogenous α-thrombin that could have detached from agarose. This experiment confirms the ability of endogenous α-thrombin derived from mutated prethrombin-2 to participate in the autocatalytic reaction.

Example 6. Detection of α-thrombin.

[0066] Different concentrations of human α-thrombin (Sigma-Aldrich) were mixed with and without untreated 5.3x10^{-7} M mouse mutant prethrombin-2 disclosed herein. The reactions were carried out in 50 mM Tris-HCl, pH 9.0, 150 mM NaCl with 4 \times 10^{-8} M rhodamine 110, bis-\{p-tosyl-L-glycyl-L-prolyl-L-arginine amide\} (Invitrogen) and the fluorescence of the resulting solution was monitored using λ\text{excitation}= 498 nm and λ\text{emission}= 521 nm.

[0067] Figure 6A shows evolution of the fluorescence intensities for varying amounts of human α-thrombin mixed with the fluorogenic substrate in the presence (Figure 6 curves a-h) or absence (Figure 6 curves i-p) of mutated prethrombin-2. The fluorescence intensities demonstrated exponential growth in the presence of the mutant, pointing to the autocatalytic character of the reaction. In such case calibration plots of the first derivative of fluorescence intensity with respect to time dF/dt, representing the rate of reaction after 2 hours, versus analyse concentration (Figure 6B) are more informative that the conventional plots [26]. On the basis of the obtained calibration curves we calculated the detection limit of the systems operating without mutated prethrombin-2 (0.488 pM, S/N = 3, n = 3) and with the mutant (10 fM, S/N = 3, n = 3).

Example 7. Detection of prothrombin in human plasma

[0068] The present invention displays the advantage of the amplified assay for prothrombin over a conventional non-amplified quantification method (Figure 7). Varying concentrations of pooled human plasma (Sigma-Aldrich) were mixed with 6x10^{-6} M ecarin (Sigma-Aldrich) with or without 1.5x10^{-6} M mouse mutant prethrombin-2. The reactions were carried out in 50 mM Tris-HCl, pH 9.0, 150 mM NaCl with 4 \times 10^{-6} M rhodamine 110, bis-\{p-tosyl-L-glycyl-L-prolyl-L-arginine amide\} (Invitrogen) and the fluorescence of the resulting solution was monitored using λ\text{excitation}= 498 nm and λ\text{emission}= 521 nm.

[0069] The detection limits of amplified (7.7 pL, S/N = 3, RSD=12%, n=3) and non amplified (710 pL, S/N=3, RSD=6%, n=3) assays were calculated according to the calibration plots (Figure 7B) depicting dF/dt at fixed time of 60 min versus volume of human plasma per microplate well. Taking into consideration that human plasma usually contains 90 μg/ml of prothrombin [27] the assay with autocatalytic amplification allowed to detect as low as 0.693 pg of prothrombin per microplate well. The conventional non amplified assay allowed to quantify as low as 63.9 pg of the analyte per well. Thus, employment of autocatalytic amplification cascade allows diminishing the volume of human plasma needed for the prothrombin assay by two orders of magnitude.
Bibliography

[0070]

SEQUENCE LISTING

[0071]

<110> Asociación Centro de Investigación Cooperativa en Biomateriales-CIC biomaGUNE

<120> METHOD FOR THE PRODUCTION OF HUMAN THROMBIN AND USES THEREOF

<130> PCT-05774

<160> 18

<170> PatentIn version 3.5

<210> 1

<211> 339

<212> PRT

<213> Mus musculus

<220>

<221> MISC_FEATURE

<222> (3)..(12)

<223> Histidine tail
<table>
<thead>
<tr>
<th></th>
<th>Met</th>
<th>Gly</th>
<th>His</th>
<th>His</th>
<th>His</th>
<th>His</th>
<th>His</th>
<th>His</th>
<th>Ser</th>
<th>Ser</th>
<th>Gly</th>
<th>His</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>5</td>
<td>10</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Ile</th>
<th>Asp</th>
<th>Ser</th>
<th>Asp</th>
<th>Ile</th>
<th>Lys</th>
<th>Thr</th>
<th>Thr</th>
<th>Glu</th>
<th>Asn</th>
<th>Leu</th>
<th>Tyr</th>
<th>Phe</th>
<th>Gln</th>
<th>Gly</th>
<th>Ser</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>20</td>
<td>25</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Thr</th>
<th>Thr</th>
<th>Asp</th>
<th>Ala</th>
<th>Glu</th>
<th>Phe</th>
<th>His</th>
<th>Thr</th>
<th>Phe</th>
<th>Phe</th>
<th>Asn</th>
<th>Glu</th>
<th>Lys</th>
<th>Thr</th>
<th>Phe</th>
<th>Gly</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>35</td>
<td>40</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Leu</th>
<th>Gly</th>
<th>Ala</th>
<th>Asp</th>
<th>Cys</th>
<th>Gly</th>
<th>Leu</th>
<th>Arg</th>
<th>Pro</th>
<th>Leu</th>
<th>Phe</th>
<th>Glu</th>
<th>Lys</th>
<th>Lys</th>
<th>Ser</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>50</td>
<td>55</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Leu</th>
<th>Lys</th>
<th>Asp</th>
<th>Thr</th>
<th>Thr</th>
<th>Glu</th>
<th>Lys</th>
<th>Leu</th>
<th>Leu</th>
<th>Asp</th>
<th>Ser</th>
<th>Tyr</th>
<th>Ile</th>
<th>Val</th>
<th>Pro</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>65</td>
<td>70</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Arg</th>
<th>Gly</th>
<th>Val</th>
<th>Glu</th>
<th>Gly</th>
<th>Trp</th>
<th>Asp</th>
<th>Ala</th>
<th>Glu</th>
<th>Lys</th>
<th>Gly</th>
<th>Ile</th>
<th>Ala</th>
<th>Pro</th>
<th>Trp</th>
<th>Gln</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>85</td>
<td>90</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Val</th>
<th>Met</th>
<th>Leu</th>
<th>Phe</th>
<th>Arg</th>
<th>Lys</th>
<th>Ser</th>
<th>Pro</th>
<th>Gln</th>
<th>Glu</th>
<th>Leu</th>
<th>Leu</th>
<th>Cys</th>
<th>Gly</th>
<th>Ala</th>
<th>Ser</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

| | 105 | | | | | | | | | | | | | | | |

| | 110 | | | | | | | | | | | | | | | |
Leu Ile Ser Asp Arg Trp Val Leu Thr Ala Ala His Cys Ile Leu Tyr
115 120 125

Pro Pro Trp Asp Lys Asn Phe Thr Glu Asn Asp Leu Leu Val Arg Ile
130 135 140

Gly Lys His Ser Arg Thr Arg Tyr Glu Arg Asn Val Glu Lys Ile Ser
145 150 155 160

Met Leu Glu Lys Ile Tyr Val His Pro Arg Tyr Asn Trp Arg Glu Asn
165 170 175

Leu Asp Arg Asp Ile Ala Leu Leu Lys Leu Lys Pro Val Pro Phe
180 185 190

Ser Asp Tyr Ile His Pro Val Cys Leu Pro Asp Lys Gln Thr Val Thr
195 200 205

Ser Leu Leu Arg Ala Gly Tyr Lys Gly Arg Val Thr Gly Trp Gly Asn
210 215 220

Leu Arg Glu Thr Trp Thr Thr Asn Ile Asn Glu Ile Gln Pro Ser Val
225 230 235 240

Leu Gln Val Val Asn Leu Pro Ile Val Glu Arg Pro Val Cys Lys Ala
245 250 255

Ser Thr Arg Ile Arg Ile Thr Asp Asn Met Phe Cys Ala Gly Phe Lys
260 265 270

Val Asn Asp Thr Lys Arg Gly Asp Ala Cys Glu Gly Asp Ser Gly Gly
275 280 285

Pro Phe Val Met Lys Ser Pro Phe Asn Asn Arg Trp Tyr Gln Met Gly
290 295 300

Ile Val Ser Trp Gly Glu Gly Cys Asp Arg Lys Gly Lys Tyr Gly Phe
305 310 315 320

Tyr Thr His Val Phe Arg Leu Lys Arg Trp Ile Gln Lys Val Ile Asp
325 330 335

Gln Phe Gly

<210> 2
<211> 322
<212> PRT
<213> Homo sapiens

<220>
<221> MISC_FEATURE
<222> (5)..(10)
<223> Histidine tail

<220>
<221> MUTAGEN
<222> (61)..(62)
<223> Mutated residues obtained by directed mutagenesis

<220>
<221> MUTAGEN
<222> (64)..(64)
<223> Mutated residues obtained by directed mutagenesis

<400> 2
Met Arg Gly Ser His His His His His His Gly Ser Val Asp Thr Ala

Thr Ser Glu Tyr Gln Thr Phe Phe Asn Pro Arg Thr Phe Gly Ser Gly

Glu Ala Asp Cys Gly Leu Arg Pro Leu Phe Glu Lys Lys Ser Leu Glu

Asp Lys Thr Glu Arg Glu Leu Leu Glu Ser Tyr Ile Val Pro Arg Gly

Val Glu Gly Ser Asp Ala Glu Ile Gly Met Ser Pro Trp Glu Val Met

Leu Phe Arg Lys Ser Pro Gln Glu Leu Leu Cys Gly Ala Ser Leu Ile

Ser Asp Arg Trp Val Leu Thr Ala Ala His Cys Leu Leu Tyr Pro Pro

Trp Asp Lys Asn Phe Thr Glu Asn Asp Leu Leu Val Arg Ile Gly Lys

His Ser Arg Thr Arg Tyr Glu Arg Asn Ile Glu Lys Ile Ser Met Leu

Glu Lys Ile Tyr Ile His Pro Arg Tyr Asn Trp Arg Glu Asn Leu Asp

Arg Asp Ile Ala Leu Met Lys Leu Lys Lys Pro Val Ala Phe Ser Asp
Tyr Ile His Pro Val Cys Leu Pro Asp Arg Glu Thr Ala Ala Ser Leu
 180 185 190
Leu Gln Ala Gly Tyr Lys Gly Arg Val Thr Gly Trp Gly Asn Leu Lys
 195 200 205
Glu Thr Trp Thr Ala Asn Val Gly Lys Gly Gln Pro Ser Val Leu Gln
 210 215 220
Val Val Asn Leu Pro Ile Val Glu Arg Pro Val Cys Lys Asp Ser Thr
 225 230 235 240
Arg Ile Arg Ile Thr Asp Asn Met Phe Cys Ala Gly Tyr Lys Pro Asp
 245 250 255
Glu Gly Lys Arg Gly Ala Cys Glu Gly Asp Ser Gly Gly Pro Phe
 260 265 270
Val Met Lys Ser Pro Phe Asn Asn Arg Trp Tyr Gln Met Gly Ile Val
 275 280 285
Ser Trp Gly Glu Gly Cys Asp Arg Asp Gly Lys Tyr Gly Phe Tyr Thr
 290 295 300
His Val Phe Arg Leu Lys Trp Ile Gln Lys Val Ile Asp Gln Phe
 305 310 315 320
Gly Glu

<210> 3
<211> 339
<212> PRT
<213> Mus musculus

<220>
<221> MISC_FEATURE
<222> (3)..(10)
<223> Histidine tail

<400> 3

Met Gly His His His His His His His Ser Ser Gly His
 1 5 10 15
Ile Asp Ser Asp Ile Lys Thr Thr Glu Asn Leu Tyr Phe Gln Gly Ser
 20 25 30
Thr Thr Asp Ala Glu Phe His Thr Phe Phe Asn Glu Lys Thr Phe Gly
35 40 45

Leu Gly Glu Ala Asp Cys Gly Leu Arg Pro Leu Phe Glu Lys Lys Ser
50 55 60

Leu Lys Asp Thr Thr Glu Lys Glu Leu Leu Asp Ser Tyr Ile Asp Gly
65 70 75 80

Arg Ile Val Glu Gly Trp Asp Ala Glu Lys Gly Ile Ala Pro Trp Gln
85 90 95

Val Met Leu Phe Arg Lys Ser Pro Gln Glu Leu Leu Cys Gly Ala Ser
100 105 110

Leu Ile Ser Asp Arg Trp Val Leu Thr Ala Ala His Cys Ile Leu Tyr
115 120 125

Pro Pro Trp Asp Lys Asn Phe Thr Glu Asn Asp Leu Leu Val Arg Ile
130 135 140

Gly Lys His Ser Arg Thr Arg Tyr Glu Arg Asn Val Glu Lys Ile Ser
145 150 155 160

Met Leu Glu Lys Ile Tyr Val His Pro Arg Tyr Asn Trp Arg Glu Asn
165 170 175

Leu Asp Arg Asp Ile Ala Leu Leu Lys Leu Lys Lys Pro Val Pro Phe
180 185 190

Ser Asp Tyr Ile His Pro Val Cys Leu Pro Asp Lys Gln Thr Val Thr
195 200 205

Ser Leu Leu Arg Ala Gly Tyr Lys Gly Arg Val Thr Gly Trp Gly Asn
210 215 220

Leu Arg Glu Thr Trp Thr Thr Asn Ile Asn Glu Ile Gln Pro Ser Val
225 230 235 240

Leu Gln Val Val Asn Leu Pro Ile Val Glu Arg Pro Val Cys Lys Ala
245 250 255

Ser Thr Arg Ile Arg Ile Thr Asp Asn Met Phe Cys Ala Gly Phe Lys
260 265 270

Val Asn Asp Thr Lys Arg Gly Asp Ala Cys Glu Gly Asp Ser Gly Gly
275 280 285
EP 2 773 756 B1

Pro Phe Val Met Lys Ser Pro Phe Asn Asn Arg Trp Tyr Gln Met Gly
290 295 300

Ile Val Ser Trp Gly Glu Gly Cys Asp Arg Lys Gly Lys Tyr Gly Phe
305 310 315 320

Tyr Thr His Val Phe Arg Leu Lys Arg Trp Ile Gln Lys Val Ile Asp
325 330 335

Gln Phe Gly

<210> 4
<211> 322
<212> PRT
<213> Homo sapiens

<220>
<221> MISC_FEATURE
<222> (5)..(10)
<223> Histidine tail

<400> 4

Met Arg Gly Ser His His His His His Gly Ser Val Asp Thr Ala
1 5 10 15

Thr Ser Glu Tyr Gln Thr Phe Phe Asn Pro Arg Thr Phe Gly Ser Gly
20 25 30

Glu Ala Asp Cys Gly Leu Arg Pro Leu Phe Glu Lys Lys Ser Leu Glu
35 40 45

Asp Lys Thr Glu Arg Glu Leu Leu Glu Ser Tyr Ile Asp Gly Arg Ile
50 55 60

Val Glu Gly Ser Asp Ala Glu Ile Gly Met Ser Pro Trp Gln Val Met
65 70 75 80

Leu Phe Arg Lys Ser Pro Glu Leu Leu Cys Gly Ala Ser Leu Ile
85 90 95

Ser Asp Arg Trp Val Leu Thr Ala Ala His Cys Leu Leu Tyr Pro Pro
100 105 110

Trp Asp Lys Asn Phe Thr Glu Asn Asp Leu Leu Val Arg Ile Gly Lys
115 120 125

His Ser Arg Thr Arg Tyr Glu Arg Asn Ile Glu Lys Ile Ser Met Leu
Glu Lys Ile Tyr Ile His Pro Arg Tyr Asn Trp Arg Glu Asn Leu Asp
Arg Asp Ile Ala Leu Met Lys Leu Lys Lys Pro Val Ala Phe Ser Asp
Tyr Ile His Pro Val Cys Leu Pro Asp Arg Glu Thr Ala Ala Ser Leu
Leu Gln Ala Gly Tyr Lys Gly Arg Val Thr Gly Trp Gly Asn Leu Lys
Glu Thr Trp Thr Ala Asn Val Gly Lys Gly Gln Pro Ser Val Leu Gln
Val Val Asn Leu Pro Ile Val Glu Arg Pro Val Cys Lys Asp Ser Thr
Arg Ile Arg Ile Thr Asp Asn Met Phe Cys Ala Gly Tyr Lys Pro Asp
Glu Gly Lys Arg Gly Asp Ala Cys Glu Gly Asp Ser Gly Gly Pro Phe
Val Met Lys Ser Pro Phe Asn Arg Asn Arg Trp Tyr Gln Met Gly Ile Val
Ser Trp Gly Glu Gly Cys Asp Arg Asp Gly Lys Tyr Gly Phe Tyr Thr
His Val Phe Arg Leu Lys Lys Trp Ile Gln Lys Val Ile Asp Gln Phe
Gly Glu

<210> 5
<211> 924
<212> DNA
<213> Mus musculus

<220>
<221> mutation
<222> (140)...(140)
<223> Mutated residues obtained by directed mutagenesis

<220>
<221> mutation
<220> (142)..<143)
<221> Mutated residues obtained by directed mutagenesis

<220>
<221> mutation
<222> (148)..<149)
<223> Mutated residues obtained by directed mutagenesis

<400> 5

accacccagt ggagtttcca cacccctttc aatgagaaga ccttcggcct tggggaggca 60
gactgtgccc tgcggctttt gttcggagag aatgcgtttga aagacacaac cggaaaaagg 120
cctcctgtct cttacasagt cccgcgcgggc gttgagggct gggacgcgtga gaaggtatct 180
gcccctctggc agtgtatgcct ttcccggag aagttcccaag agtgcgtgtct ggggccagc 240
cctatcaagt gaccgtgggt cctcaactgct gcccaactgca ttctgtaccc acocctggga 300
aagaacctca cttgagatga cctcctgttg gctgattggca agcattccccg aaccagatat 360
gagcgggaatg ttgaaaaagat cttcatactgt gaaagatct acgtccaccc cagataaaca 420
tggcgggaga acctagaccc cgatatgcgt cttgtcaagc taaagaaccct tgaacccttc 480
agtgactata ttcaccctgcg ggcgttgcca gacaagcaga cagtaacaccg cttgctccgg 540
gctggttata aagggccccgt gacaggcttg ggcaccccttc gggagacatg gacaaccaca 600
atcaatgaga taccccccag gtctctgacg gtgttgaccc tggcccattgt aagacgggca 660
gtgactaagg ccctccacccct gattcaaat actgacaaca tggctctgc ccttcctcaag 720
gtgaatgaca ccaagcggagg agatgtcttg gaaaggtgaca gtggaggacc tttgtctatg 780
aagagccccct ttaaaccacc ctgtgtattcct atggttatgg tctcattggg ggacagatgt 840
gacgggaaggg ggaataaccg cttctcacag catggttgtcc gttgtgtaaag tggatacagg 900
aaagtcattg atcaatcttg atag 924

<210> 6
<211> 969
<212> DNA
<213> Homo sapiens

<200>
<221> mutation
<222> (182)..<182)
<223> Mutated residues obtained by directed mutagenesis

<200>
<221> mutation
<222> (184)..<185)
<223> Mutated residues obtained by directed mutagenesis

<200>
<221> mutation
Mutated residues obtained by directed mutagenesis

DNA Mus musculus

<400> 6

atgagaggat cgcatcacca tcaccatcac ggatcgcgcc agaccgcccac cagtgact 60
cagactttct tcaatcgcagt gacctttggc tcgggagagg cagacttggtg gctggcacct 120
cgttccgaga agaggctgctg ggagaccaaa aaccgaaaag agctccttgga atcctcatac 180
gttccgccccg gttgaggagg ctcggatgca gagatcgccga tgtcaaccttg gcaggtgatg 240
ctttccgcca agagtcocca ggagtctgctg tgtgccccca gccctcatcg tgtacgctgg 300
gtcctccacc ccgcccactg cctctctgtac ccgccctggg acaagaacct caccgagaat 360
gaccttcctgg tgcgcacattg caagcacattc gcacccaggt acgcgccaaat cattgaaag 420
atatcatgtg tggaaagat catcatccac ccaggttaca actgccccgg gacgcctggac 480
cgggaacattg ccctggtgaa agctgaagaa cctgtttgcct tcaagtgaact aacctccccct 540
gttggtctgct ccgacagggg gacgccagcc agctttgctcc agggctggata caagggccgg 600
gtgacaggct ggggcaacct gaaggagacg tggacagcca acgtttgtaaa ggggagcccc 660
agtgtctcctgc aggtggtgtaa cctgcccatt gttggagccgc cggctcgcaca gacctcccct 720
cggatccgca tcactgacaa catgtttctgt gtcgagctaca acgcctgatga agggaaacga 780
ggggtgcct gtgaaggtga cagtgggsgga cccctctgctga taagagcccc ctttaacaca 840
cggtgtctatc aatgggcat ggtctcaggg gttgaaagct gttccgcccc gaaggaattat 900
ggtctctac cacatgtgtt ccgccctgaag aagtggtcag aagaggtcat tgatcagttt 960
ggagagtag 969

<210> 7
<211> 924
<212> DNA
<213> Mus musculus

<400> 7
accacgatg cggagttcca cacctttctc aatgagaaga cctcggcct tgggaggca 60

gacctggcc tgtggtccttt gtggagaaga aagttggtta aagacaaacc cgaaaaaagg 120

ctttttgaat cttctctagta cggggtcctc tgtgaggaggct ggggagrgtaa gaaggtgatac 180
gccccctgggc aggggtatcct ttttggggaag aagtccccaaag agctgctgtgc tggggggctg 240
cattatcagtg aacgctgggt ctcactctgt gcccactgca ttctgtaccc aaccttggaac 300

aagaacctta ctagaagttg cctctctggtg cggattggca agcattccccg aaccagatat 360
gagctggaatg ttagaagata cttccatgctg gaaagatct acgtccaccccc cagatataac 420
tggcggctgaa acctagaccc cgatactccgct tgtctcacaac taaaagaacc tgtaccccttc 480

agtgactata ttcacccctggt gttttgctca gacaagccatg caagtaaccag ctctgctccgg 540
gctgtttata aaggggggtt gacaggtcag ggcaaccttc gggagacagc gacaaccccaac 600

atcaattgaga tacagcccag cgtctctgacgt tgtggtaacc tgcccaattgt agagccggcca 660
g tgtgcaaggg ctcctccacgg gattogaatt actgacaacaactgcttgctgc tggcttaacagcc 720
gtgaatgcaca ccaagcgagg agatgttctgt gaaagttgaca gttggagggagc tttttctcatg 780

aagaccccct ttaacaaccg ctggtacatca atgggtattg tctcatgggg ctaaggattgt 840
gaccggaagg ggaatccgag cttctacacgc catgtgtttcc gtctgaaaaac gttgatacag 900

aaagtcattg atcaatattttg atag 924

<210> 8
<211> 969
<212> DNA
<213> Homo sapiens

<400> 8
atgagaggt cgcatcacca tcacacctac ggatccgtcg acaccgccac cagtgtagtc 60
cagactttct tcaatcgcag gacttttggc tcgggagaggg cagactgtcg gctgcgaacct 120
cggggacgca tcgaatggcag gatagcgtgca cgttggccctg gttgggctgcc ctctctacctg 180
gacgggccgca tcggagatcgc gcacatccgct tgtcaccttcg gcaagttgatg 240
ccttttccgca agagtcctca cggagtttgtg cgttgggcca cgcctcatcg tcagctgcttg 300
gttcctcaacc gcgcctacttg cctctctgtac cggccttggg gcaagaacgt caccgagaat 360
gaaccttctgg tcgctcattgc caagcactcc gcagcgcctg aggacgaaaa catgtgaagac 420
atatcctatgt tcgaaaaacat ctacatccac cccaggtaca actggcggga gaacctggac 480
cgggacattg ccctgtgatga gctgaagaag cctgttgtgct tcagtgactca cattcaccctc 540
gtgctgtctgc cgcagcgcgg cagggcgacc agctttgctcc aggctggata caagggacgg 600
gtgacaggct ggggcaacct gcagagacag tggagagcag caagttgtgaag gggccagccc 660
agtgtctctgc aggttgtgtaa ccctgcccatt gttgggcttcg cggctcgcac ggcttcacc 720
cggatccgca tcactgcacac cagttttctgt gctgttctacac agctgtgggat aggggaagca 780
gggggtgcct gtgaaggtgtc cagttggggg cccttttgctc tgaagagccc ctttaaccc 840
cgctggttagc aaagtggttt tgtctctggg ggtggaagct gtgaccgagga tgggaatata 900
ggcctctcaca cacatgtgttt ccgcctgaag aagttggtac agaagggctc tgaatgcagttt 960
ggagagtag 969

<210> 9
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> Mouse Prethrombin-2 Forward Primer

<400> 9
cgcggatc.ccacaggtgcc ggtttcc 28

<210> 10
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Mouse Prethrombin-2 Reverse Primer

<400> 10
cgcgtcgagct tatccaatgt gatcaatgac 30

<210> 11
<211> 45
<212> DNA
Artificial Sequence

Forward primer for site-specific mutations of mouse prethrombin-2 gene

cttcttgact cttacatagt cccgcgcggc gtggagggct gggac

Reverse primer for site-specific mutations of mouse prethrombin-2 gene
gtcccagccc tccacgccgc gcgggactat gtaagagtca agaag

Human Prethrombin-2 Forward Primer

acgcgtcgac accgccacca gtgag

Human Prethrombin-2 Reverse Primer
ccaagcttc tactctccaa actgatc

Forward primer for site-specific mutations of human prethrombin-2 gene
cctggaatcc tacatcgtcc cgcgcggtgt ggagggctcg gatg
Reverse primer for site-specific mutations of human prothrombin-2 gene

catccgagcc ctccacaccg cgcgggacga tgtaggattc cagg

Ile Asp Gly Arg Ile Val

Ile Val Pro Arg Gly Val

Claims

1. Mutant prethrombin-2 characterized by having SEQ ID NO: 1 or SEQ ID NO: 2 or their nucleotide encoding sequences characterized by SEQ ID NO: 5 or SEQ ID NO: 6, respectively.

2. Mutant prethrombin-2 according to claim 1 characterized by having autocatalytic activity and by being stable in vitro.

3. Use of the mutant prethrombin-2 of claims 1 to 2 for the production of α-thrombin.

4. Mutant prethrombin-2 of claims 1 to 2 for use in the in vitro detection of α-thrombin/prothrombin.

5. Mutant prethrombin-2 of claims 1 to 2 for use in the in vitro diagnosis and/or prognosis of coagulation-related diseases.

6. Mutant prethrombin-2 for use according to claim 5 wherein the coagulation-related disease is selected from the group comprising: haemophilia, thrombosis, inherited prothrombin deficiency Type I or Type II, acquired prothrombin deficiency, hypoprothombinaemia syndrome and von Willebrand disease.

7. Method for preparing α-thrombin which comprises the following steps:

1. Modify, preferably by site directed mutagenesis, the DNA sequence encoding for factor Xa cleavage site in wild type prothrombin-2 gene to a DNA sequence encoding for α-thrombin cleavage site.
2. Insert the mutated DNA prethrombin-2 into an expression vector.
3. Transform a host cell with the vector disclosed in previous step.
4. Culturing the transformed host cells of previous step in an appropriate culture medium.
5. Harvest transformed cells and solubilize proteins in inclusion bodies.
6. Isolating the supernatant to obtain purified mutant prethrombin-2.
7. Contacting the purified mutant prethrombin-2 obtained in previous step with α-thrombin.
8. Separating the α-thrombin obtained in previous step 7.

8. Method according to claim 7 wherein the amino acid sequence of the factor Xa cleave site in wild type prothrombin-2 is SEQ ID NO: 17.
9. Method according to claim 7 wherein the amino acid sequence of thrombin cleave site in mutant prethrombin-2 is SEQ ID NO: 18.

10. Method according to claim 7 wherein the DNA sequence of the wild type prethrombin-2 is selected from the group comprising SEQ ID NO: 7 or SEQ ID NO: 8.

11. A kit for detecting α-thrombin/prothrombin in a sample comprising the mutant prethrombin-2 of claims 1 to 2.

12. Use of the kit of claim 11 for the in vitro diagnosis and/or prognosis of coagulation-related diseases.

13. Use according to claim 12 wherein the coagulation-diseases are selected from the group comprising: haemophilia, thrombosis, inherited prothrombin deficiency Type I or Type II, acquired prothrombin deficiency and von Willebrand disease.

14. An in vitro method of diagnosis and/or prognosis of coagulation-related diseases which comprises the determination in a sample from a subject of the activity level of α-thrombin/prothrombin using the kit of claim 11 and the comparison of said activity level with respect to the values for the same activity obtained from healthy controls.

15. An in vitro method according to claim 14 wherein the coagulation-related disease is selected from the group comprising: haemophilia, thrombosis, inherited prothrombin deficiency Type I or Type II, acquired prothrombin deficiency and von Willebrand disease.

Patentansprüche

1. Mutiertes Präthrombin-2, dadurch gekennzeichnet, dass es die SEQ ID NO: 1 oder SEQ ID NO: 2 oder die dafür kodierenden Nukleotidsequenzen, gekennzeichnet durch die SEQ ID NO: 5 bzw. SEQ ID NO: 6, aufweist.

7. Verfahren zur Herstellung von α-Thrombin, das folgende Schritte umfasst:

1. Umwandlung, vorzugsweise durch ortsgerichtete Mutagenese, der DNA-Sequenz, die für die Faktor-Xa-Schnittstelle im Wildtyp-Präthrombingen kodiert, in eine DNA-Sequenz, die für die α-Thrombin-Schnittstelle kodiert;
2. Einfügen der mutierten Präthrombin-2-DNA in einen Expressionsvektor;
3. Transformieren einer Wirtselle mit dem im vorhergehenden Schritt beschriebenen Vektor;
4. Zücht en der transformierten Wirtszellen des vorhergehenden Schritts in einem geeigneten Kulturmedium;
5. Ernten der transformierten Zellen und Solubilisierung der Proteine in Einschlusskörpern;
6. Isolierung des Überstandes, um gereinigtes mutiertes Präthrombin-2 zu erhalten;
7. Inkontaktnahme des gereinigten, im vorhergehenden Schritt erhaltenen mutierten Präthrombins-2 mit α-Thrombin;
8. Abtrennen des im vorhergehenden Schritt 7 erhaltenen α-Thrombins.

8. Verfahren nach Anspruch 7, wobei die Aminosäuresequenz der Faktor-Xa-Schnittstelle im Wildtyp-Präthrombin-2...
die SEQ ID NO: 17 ist.

10. Verfahren nach Anspruch 7, wobei die DNA-Sequenz des Wildtyp-Präthrombins-2 ausgewählt wird aus der Gruppe umfassend die SEQ ID NO: 7 oder die SEQ ID NO: 8.

11. Kit zum Nachweis von α-Thrombin/Prothrombin in einer Probe, der das mutierte Präthrombin-2 nach den Ansprüchen 1 bis 2 umfasst.

Revendications

1. Préthrombine 2 mutante caractérisée en ce qu'elle a une SEQ ID NO: 1 ou SEQ ID NO: 2 ou leurs séquences codantes de nucléotides caractérisées par une SEQ ID NO: 5 ou SEQ ID NO: 6, respectivement.

2. Préthrombine 2 mutante selon la revendication 1, caractérisée en ce qu'elle présente une activité autocatalytique et en ce qu'elle demeure stable in vitro.

3. Utilisation de la préthrombine 2 mutante selon les revendications 1 à 2 pour la production de thrombine α.

4. Préthrombine 2 mutante selon les revendications 1 à 2 destinée à être utilisée pour la détection in vitro de la thrombine α / prothrombine.

5. Préthrombine 2 mutante selon les revendications 1 à 2 destinée à être utilisée pour le diagnostic et/ou le pronostic in vitro des maladies liées à la coagulation.

6. Préthrombine 2 mutante destinée à être utilisée selon la revendication 5, dans laquelle la maladie liée à la coagulation est sélectionnée dans le groupe comprenant : l’hémophilie, une thrombose, un déficit héréditaire en prothrombine de Type I ou Type II, un déficit acquis en prothrombine, le syndrome d’hypoprothrombinémie et la maladie de von Willebrand.

7. Méthode de préparation de la thrombine α qui comprend les étapes suivantes:

1. Modification, de préférence par mutagénèse dirigée, de la séquence d’ADN codant le site de clivage de facteur Xa dans un gène de préthrombine 2 de type sauvage en une séquence d’ADN codant le site de clivage de thrombine α.

2. Insertion de la préthrombine 2 d’ADN muté dans un vecteur d’expression.

3. Transformation d’une cellule hôte avec le vecteur mentionné dans l’étape précédente.

4. Culture des cellules hôtes transformées de l’étape précédente dans un milieu de culture approprié.

5. Recueil des cellules transformées et solubilisation des protéines dans des corps d’inclusion.

6. Isolement du surnageant afin d’obtenir la préthrombine 2 mutante purifiée.
7. Mise en contact de la préthrombine 2 mutante purifiée obtenue dans l'étape précédente avec la thrombine α.

8. Séparation de la thrombine α obtenue dans l'étape 7 précédente.

8. Méthode selon la revendication 7 où la séquence d'acides aminés du site de clivage du facteur Xa dans la préthrombine 2 de type sauvage est la SEQ ID NO: 17.

9. Méthode selon la revendication 7 où la séquence d'acides aminés du site de clivage de la thrombine dans la préthrombine 2 mutante est la SEQ ID NO: 18.

10. Méthode selon la revendication 7 où la séquence d'ADN de préthrombine 2 de type sauvage est sélectionnée dans le groupe comprenant la SEQ ID NO: 7 ou la SEQ ID NO: 8.

11. Kit de détection de la thrombine α / prothrombine dans un échantillon comprenant la préthrombine 2 mutante des revendications 1 à 2.

12. Utilisation du kit de la revendication 11 pour le diagnostic et/ou pronostic in vitro de maladies liées à la coagulation.

13. Utilisation selon la revendication 12 où les maladies liées à la coagulation sont sélectionnées dans le groupe comprenant : l'hémophilie, une thrombose, un déficit héréditaire en prothrombine de Type I ou Type II, un déficit acquis en prothrombine et la maladie de von Willebrand.

14. Méthode in vitro de diagnostic et/ou de pronostic des maladies liées à la coagulation comprenant, la détermination dans un échantillon provenant d'un sujet du niveau d'activité de la thrombine α / prothrombine en utilisant le kit de la revendication 11, et la comparaison dudit niveau d'activité par rapport aux valeurs obtenues pour la même activité chez des sujets témoins en bonne santé.

15. Méthode in vitro selon la revendication 14 où la maladie liée à la coagulation est sélectionnée dans le groupe comprenant : l'hémophilie, une thrombose, un déficit héréditaire en prothrombine de Type I ou Type II, un déficit acquis en prothrombine et la maladie de von Willebrand.
Figure 1

<table>
<thead>
<tr>
<th>P4 P3</th>
<th>P1 ‘P2’</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FXa</td>
</tr>
<tr>
<td>WT</td>
<td>IDGRIV</td>
</tr>
<tr>
<td>Mutant</td>
<td>IVPRGV</td>
</tr>
<tr>
<td></td>
<td>Th</td>
</tr>
</tbody>
</table>

Figure 2

A) SDS-PAGE

<table>
<thead>
<tr>
<th>SDS-PAGE</th>
<th>kDa</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>20</td>
</tr>
</tbody>
</table>

B) Western Blot

<table>
<thead>
<tr>
<th>Western Blot</th>
<th>kDa</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>20</td>
</tr>
</tbody>
</table>
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Non-patent literature cited in the description

- H. YONEMURA; T. IMAMURA; K. SOEJIMA; Y. NAKAHARA; W. MORIKAWA; Y. USHIO; Y. KAMACHI; H. NAKATAKE; K. SUGAWARA; T. NAKAGAKI. J. Biochem., 2004, vol. 135, 577-582 [0070]
- Y. WEIZMANN; Z. CHEGLAKOV; V. PAVLOV; I. WILLNER. Nat. Protoc., 2006, vol. 1, 554-558 [0070]
- K. SOEJIMA; N. MIMURA; H. YONEMURA; H. NAKATAKE; T. IMAMURA; C. NOZAKI. J. Biochem., 2001, vol. 130, 269-277 [0070]